Public funded research projects at IAVT/ZmP

Bauteil 4.0

Functional integrated sandwich panels for airplanes cabin as a prerequisit for Industry 4.0 and innovative business and MRO processes

Project title

Functional integrated sandwich panels for airplanes cabin as a prerequisit for Industry 4.0 and innovative business and MRO processes

Project leader at IAVT/ZmP
Prof. Dr.-Ing. habil.
Thomas Zerna
Tel.:
(0351) 463 33274
Scientific coordination
Dipl.-Ing.
Daniel Ernst
Tel.:
(0351) 463 36941
Financing

BMWi

Project period
06/2019 - 11/2021
Project partners

TU Hamburg, Institut für Flugzeug-Kabinensysteme
IMA Materialforschung und Anwendungstechnik GmbH

Project content

The goal of the project is the design of functions integrating, intelligtent and data processing sandwich panels for airplanes cabin - so called "Bauteile 4.0". In the past such constructional panels have been designed following strictly the convention "one function - one element". That hirarchical system and function separation restrains the ambition of developing multifunctional, highly integrated and hence weight optimized construction elements. Automotive industry has demonstrated that integration of additional functions like energy or data transfer into elements leads to wight reduction of the whole system while reliability and safety at least hold the former level. Functional integration is always combined with a plus on comfort for passengers and enables intelligent production processes as well as simplier assembly and maintenance.
Hence, there is a need in avionics industry as well to use the principle of funtional integration into elements. The airplanes cabin allows to design highly integrated elements with miscellaneous electronic and IT functions, to manufacture and implement those elements. Cabin interior, ground floor and multiple additional sndwich panels in the cabin are predestinated for that.

KONEKT

connecting embedded components as a technological solution

Project title

connecting embedded components as a technological solution

Project leader at IAVT/ZmP
Dipl.-Ing.
Tobias Tiedje
Tel.:
(0351) 463 32132
Scientific coordination
Dipl.-Ing.
Sebastian Lüngen
Tel.:
(0351) 463 43790
Financing

BMWi, ESF

Project period
05/2019 - 10/2020
Project partners

 (none)

Project content

KONEKT enables the production of adaptively manufactured 3D assemblies on large and competitive dimensions. The KONEKT-technology revolutionizes the electronic assembly by using 3D manufacturing and realizing high-frequency interconnects. It combines the possibility of producing individual packages of rapid prototyping and manufacturing at a large scale. Simplified processes facilitate fast and automated production of various assemblies. Therefore, energy, process and material costs will be reduced. Now, small and medium-sized companies have the opportunity to establish new business fields by ordering individual electronic packages without high set-up costs.

CeTI

Centre for Tactile Internet with Human-in-the-Loop

Project title

Centre for Tactile Internet with Human-in-the-Loop

Project leader at IAVT/ZmP
Prof. Dr.-Ing. Dr. h.c. mult.
Karlheinz Bock
Tel.:
(0351) 463 36345
Scientific coordination
Dipl.-Ing.
Martin Schubert
Tel.:
(0351) 463 42510
Financing

DFG funded Excellence Cluster

Project period
01/2019 - 12/2026
Project partners

TU München
Deutsches Zentrum für Luft- und Raumfahrt
Fraunhofer-Gesellschaft
Wandelbots
Deutsche Telekom
atlantic labs

Project content
Example for flexible and stretchable electronics as starting point for research in CeTI. Upper: A microchip on stretchable polymer substrate. Lower: A printed, stretchable LED interconnect on the hand as an example for future application site for, e.g. displays

IAVT is part of excellence cluster CeTI

The “Centre for Tactile Internet with Human-in-the-Loop” (CeTI) at TU Dresden will lift the interaction between humans and robots on a new level. In future, people should be able to interact in real time with networked automated systems in the real or virtual world. In particular, humans will be within the feedback loop between the cyber and physical components of technical systems. In order to achieve this goal, various disciplines within the TU Dresden work together on this project, including electrical engineering and information technology, psychology, medicine and neuroscience. Furthermore, external partners including the TU München and the Deutsches Zentrum für Luft- und Raumfahrt and others will support the project.

The IAVT will support this research project with research on reliable flexible and stretchable electronics. The central challenge in CeTI requires sensors, such as touch and positioning sensors, as well as actuators on various positions on the body. The power supply and partially the communication between the individual elements need to be ensured by conductive tracks. Those, on the one hand need to adapt to human movements and shapes through suitable mechanical properties. But, on the on the other hand they need to keep performing flawlessly. In addition, due to the large number of different elements, a high degree of integration and miniaturization is required in order not to influence the motion sequences. Furthermore, very fast processing of the sensor signals and non-delay communication of sensor nodes between human and machine and with the network or edge cloud is required. That leads to a major prerequisite for electronic, which needs to be designed for very high frequencies.

Dynatherm

Thermography based quality control for high dynamic assembly processes in power electronics

Project title

Thermography based quality control for high dynamic assembly processes in power electronics

Project leader at IAVT/ZmP
Prof. Dr.-Ing. habil.
Thomas Zerna
Tel.:
(0351) 463 33274
Scientific coordination
PD Dr.-Ing. habil.
Martin Oppermann
Tel.:
(0351) 463 35051
Financing

BMWi, ZIM

Project period
01/2018 - 12/2019
Project partners

budatec GmbH, Berlin
Fraunhofer IKTS, Dresden
LFG-Eckhard Oertel e.K., Gera
Via Electronic GmbH, Hermsdorf

Project content

The project pursues the goal to improve the quality of area interconnects of power electronic modules by process integrated inspection and therefor to enhance the long-term reliability of such modules. To realize that, ceramic heating elements with high focused heating power and integrated cooling structures will be developed. A matrix of those heating-cooling elements allows an area-resolved induction of thermal energy. In addition the high dynamic behavior of the heaters allows a dedicated area- and time-resolved stimulation of the module for thermal inspection of  interconnects.

Optaver II

Research group Optical Packaging for 3D-optomechatronic-Devices

Project title

Research group Optical Packaging for 3D-optomechatronic-Devices

Project leader at IAVT/ZmP
Prof. Dr.-Ing. Dr. h.c. mult.
Karlheinz Bock
Tel.:
(0351) 463 36345
Scientific coordination
Dr.-Ing.
Lukas Lorenz
Tel.:
(0351) 463 43767
Financing

DFG

Project period
06/2018 - 05/2021
Project partners

Friedrich-Alexander University Erlangen-Nuremberg (Chair of Factory Automation and Production Systems and Institute of Optics)
Leibniz University Hannover (Institute of Transport and Automation Technology)
Laserzentrum Hannover e.V.

Project content
Example for an optical bus system as backbone for the communication in cars
Asymmetric, Interruption-free coupling of two printed waveguides for optical bus systems

Current roadmaps are increasingly highlighting the role of optical bus systems as the backbone of future sensor and infotainment networks in many areas. Automotive, aerospace and industrial 4.0 applications in particular benefit from high EMC compatibility and low weight. In addition to these advantages, the high bandwidth energy efficiency and the low space requirement of optical connections are especially outstanding. In times of constantly increasing data volumes, standard copper wiring is reaching its limits, especially due to energy consumption at high transmission rates.

In the research group OPTAVER (Optical Packaging for 3D-optomechatronic-Devices) the modelling, simulation and additive production of polymer optical fibers on flexible foil substrates and their connection by asymmetric bus couplers as optical bus systems are investigated. In the first funding period, the system components were realized as planned and demonstrated in cooperation. The optical waveguides were first applied to a two-dimensional foil. This was conditioned in advance to improve the aspect ratio of the waveguide.

In the second funding period, the extension to three-dimensional opto-mechatronically integrated components (3D-opto-MID) is to be investigated. The formability of the thermoplastic film substrates will be used for this purpose. The three-dimensional integration of optical and mechatronic functionalities leads to an increase of the integration density and an extension of the design possibilities of opto-MID. The detachable optical couplers also offer a 3D-capable reconfigurable connection to a bus system.

Productive4.0

Electronics and ICT as enabler for digital industry and optimized supply chain management covering the entire product lifecycle

Project title

Electronics and ICT as enabler for digital industry and optimized supply chain management covering the entire product lifecycle

Project leader at IAVT/ZmP
Prof. Dr.-Ing. Dr. h.c. mult.
Karlheinz Bock
Tel.:
(0351) 463 36345
Scientific coordination
Dipl.-Math.
Dirk Schloß
Tel.:
(0351) 463 31696
Financing

ECSEL JU, BMBF

Project period
05/2017 - 04/2020
Project partners

Infineon Technologies Dresden and many other partners from 19 EU countries

Project content

The main objective of Productive4.0 is to achieve significant improvement in digitalising the European industry by means of electronics and ICT. Ultimately, the project aims at suitability for everyday application across all industrial sectors – up to TRL8. It addresses various industrial domains with one single approach, that of digitalisation.

What makes the project unique is the holistic system approach of consistently focusing on the three main pillars: digital production, supply chain networks and product lifecycle management.

This is part of the new concept of introducing seamless automation and network solutions as well as enhancing the transparency of data, their consistence, flexibility and overall efficiency. Currently, such a complex project can only be realised in ECSEL.

The well balanced consortium consists of 45% AENEAS, 30% ARTEMIS-IA and 25% EPOSS partners, thus bringing together all ECSEL communities. Representing over 100 relevant partners from 19 EU-member states and associated countries, it is a European project, indeed.

WARPAGE_ZUV

Auswirkungen von Verwindungen und Wölbungen während des Lötens auf die Qualität und Zuverlässigkeit von Lötstellen

Project title

Auswirkungen von Verwindungen und Wölbungen während des Lötens auf die Qualität und Zuverlässigkeit von Lötstellen

Project leader at IAVT/ZmP
Dr.-Ing. habil.
Heinz Wohlrabe
Tel.:
(0351) 463 35479
Scientific coordination
MSc.
Oliver Albrecht
Tel.:
(0351) 463 36408
Financing

AiF/DVS

Project period
04/2017 - 03/2019
Project partners

Projektbegleitender Ausschuss: Balver Zinn Josef Jost GmbH & Co.KG; Christian Koenen GmbH High Tech Stencils; Danfoss Silicon Power GmbH; DHD Deubner Hoffmann Digital GmbH Leipzig; G&W Leiterplatten Dresden GmbH & Co. KG; Hella KGaA Hueck & Co; Hensoldt; Heraeus Materials Technology GmbH & Co.KG; Microtronic Microelectronic Vertriebs GmbH; Miele & Cie. KG; Robert Bosch GmbH; Seho Systems GmbH; Sensitec GmbH; Texas Instruments Deutschland GmbH; Trainalytics;Zollner Elektronik AG

Project content

Im SMT-Prozess erwartet man, dass die zu verarbeitenden Komponenten immer eben (bzw. unverbogen) sind. In der Realität treten aber Verwindungen und Wölbungen auf. Standards (z.B. IPC TM 650) geben Maximalwerte für diese Verbiegungen an, die aber nur für Raumtemperatur gelten. Für das Löten gibt es keine speziellen Grenzwerte. Am Institut steht mit dem TherMoiré® System eine Messausrüstung zur Verfügung, mit der man unter angenäherten Lötbedingungen die Verbiegungen von Bauelementen und Leiterplatten messen kann. Die zahlreich vorhandenen Messergebnisse zeigen, dass bei vielen Bauelementen und Leiterplatten erhebliche Verbiegungen nur während des Lötens auftreten, die mit real auftretenden Qualitäts- (z.B. Head in Pillow bei BGA) und Zuverlässigkeitsproblemen (z.B. Padabrissen) korrelieren.

Im Projekt werden Messungen an verschiedenen Bauelementen und Leiterplatten durchgeführt, deren Ergebnisse in eine Verbiegungsdatenbank einfließen. Es werden Testboards mit gezielt einstellbarem Verbiegungsverhalten konstruiert. In Experimenten werden die Einflüsse von solchen Verbiegungen auf die Qualität und die Zuverlässigkeit ermittelt. Die Zuverlässigkeitsanalysen werden durch FE-Simulationen ergänzt.

Als Endergebnis ergeben sich Empfehlungen für präzisere Grenzwerte von Verwindungen und Wölbungen, die in Standards einfließen können. Es wird dadurch möglich, qualitätskritische Komponenten zu identifizieren und Maßnahmen (notwendige Messungen, Änderungen der Konstruktion und der Materialauswahl) abzuleiten. Als Effekte können signifikante Fehlerquotensenkungen und Verbesserungen der Zuverlässigkeit von elektronischen Baugruppen erwartet werden.

KoHLa

Miniaturised High Voltage Power Supply for the Integration in Laser Systems

Project title

Miniaturised High Voltage Power Supply for the Integration in Laser Systems

Project leader at IAVT/ZmP
Prof. Dr.-Ing. Dr. h.c. mult.
Karlheinz Bock
Tel.:
(0351) 463 36345
Scientific coordination
Dr.-Ing.
Karsten Meier
Tel.:
(0351) 463 36594
Financing

ZIM / BMWi

Project period
04/2017 - 09/2019
Project partners

TU Berlin - Forschungsschwerpunkt Technologien der Mikroperipherik
Tigris Elektronik GmbH
LFG - Eckhard Oertel e. K.

Project content

The KoHLa project (miniaturised high voltage power supply for the integration in laser systems) aims for the miniaturisation and integration of a high voltage power supply used for a CO2 laser system. The power supply is a 19” rack solution as of today. A significant reduction of the size and the system integration of the power supply, innovation of electrical functionality and substrate technologies as well as new cooling approaches are focus of the project.

Using the PowerBoard technology (organic substrates with thick and structured copper trace layers) as a starting point and developing new organic-ceramic composite substrates a novel power electronics device will be developed. Replacement of recent cooling approaches, integration of analog power and digital control systems, usage of standard low cost materials and components, and the miniaturisation and system integration will be realised. Finally, a demonstrator will be manufactured showing the functionality of the power supply based on the novel technological approaches of thick copper based and organic-ceramic composite substrates.

FlexEO

Auf flexibler Elektronik und Optik basierendes tragbares Gerät zur in vivo Spektrometrie von Blutbestandteilen für die Telemedizin

Project title

Auf flexibler Elektronik und Optik basierendes tragbares Gerät zur in vivo Spektrometrie von Blutbestandteilen für die Telemedizin

Project leader at IAVT/ZmP
Prof. Dr.-Ing. Dr. h.c. mult.
Karlheinz Bock
Tel.:
(0351) 463 36345
Scientific coordination
Prof. Dr.-Ing. Dr. h.c. mult.
Karlheinz Bock
Tel.:
(0351) 463 36345
Financing

SMWi - SAB

Project period
12/2016 - 12/2019
Project partners

Institut für Biomedizinische Technik der TU Dresden
Anvajo GmbH

Project content

Die Technische Universität Dresden (TUD) und die Anvajo GmbH, eine studentische Ausgründung der TUD, führen gemeinsam das Telemedizin-Projekt »FlexEO - Auf flexibler Elektronik und Optik basierendes tragbares Gerät zur in vivo Spektrometrie von Blutbestandteilen für die Telemedizin« durch.

Ein tragbares Gerät wird entwickelt, das außerklinisch und nicht-invasiv Blutbestandteile und Parameter des Herz-Kreislauf-Systems analysieren kann. Das Kernstück der nicht-invasiven Messung wurde in den letzten drei Jahren am Institut für Aufbau- und Verbindungstechnik der Elektronik (IAVT) der Fakultät Elektrotechnik und Informationstechnik (EuI) entwickelt: ein optisches Mikrospektrometer, mit dessen Hilfe Licht in seine spektralen Bestandteile zerlegt und analysiert werden kann. Dieses Mikrospektrometer ist so klein, dass es leicht in einen Fingerclip oder ein tragbares Gerät integriert werden kann.

Das Mikrospektrometer soll in ein tragbares Gerät eingebettet werden, welches teilweise auf flexibler Elektronik basiert. Die Wissenschaftler/innen am IAVT der TUD werden dieses Gerät entwerfen. Aufgrund der flexiblen Elektronik werden sich die Sensoren des Gerätes an die Anatomie des Trägers anpassen können. Somit werden die verschiedenen  Sensoren im Gerät optimal zur Körperoberfläche hin ausgerichtet. Das wird zu einer deutlichen Verbesserung der Messqualität im Vergleich zu herkömmlichen Methoden führen. Neuartige Algorithmen sollen außerdem den pulsierenden Blutanteil im menschlichen Gewebe berücksichtigen. So sollen bisher nicht messbare Blutbestandteile nicht-invasiv bestimmt werden können. Die dafür benötigte Software wird im Rahmen des Projekts am Institut für Biomedizinische Technik der Fakultät EuI entwickelt.

Mit Hilfe des Gerätes und dessen neuer Messtechnik sollen konventionelle Messmethoden qualitativ entscheidend verbessert werden, um eine flächendeckende, telemedizinische Überwachung und Versorgung von chronisch erkrankten Menschen (wie z.B. Patienten mit obstruktiven-Schlafapnoe-Syndrom oder Diabetes Mellitus) im häuslichen Umfeld zu ermöglichen.

Die Projektlaufzeit von FlexEO umfasst insgesamt drei Jahre; im Dezember 2019 soll das Projekt abgeschlossen werden.

Atto3D

ESF Young Researchers Group "Communication infrastructres for Atto networks in 3D chip stacks"

Project title

ESF Young Researchers Group "Communication infrastructres for Atto networks in 3D chip stacks"

Project leader at IAVT/ZmP
Prof. Dr.-Ing. Dr. h.c. mult.
Karlheinz Bock
Tel.:
(0351) 463 36345
Scientific coordination
Dipl.-Ing.
Sebastian Lüngen
Tel.:
(0351) 463 43790
Financing

ESF/SAB

Project period
09/2015 - 02/2019
Project partners

TU-Dresden, Faculty of Electrical and Computer Engineering:

  • Institute of Semiconductor Technology and Microsystems
    • Chair of Semiconductor Technology
  • Institute of Telecommunications
    • Chair of Radio Technology
    • Junior professorship of Integrated Photonic Devices
    • Vodafone chair of Mobile Communication Systems
    • Deutsche Telekom chair of Communication Networks
  • Institute of Electromechanical and Electronic Design
  • Institute for Fundamental Electrical Engineering and Electronics
    • Highly-Parallel VLSI-Systems and Neuromorphic Circuits
    • Chair for Circuit Design and Network Theory

 

Project content
Group of themes for the communication infrastructures of 3D-Atto-networks

In the next 20 years, the continual miniaturization of electronics will reach its physical limits. Nowadays chips are manufactured in CMOS technology with structures less than 14 nm. The transistor geometries will decrease with further downscaling, reaching the size a few atom diameters. A promising solution is 3D-integration, the stacking of chips on top of each other. Hereby the die-stack becomes a “skyscraper” of electronics. For optimal technical usage, information must be transmit efficient through the whole die-stack. Therefore, it is necessary to analyze and develop a completely new communication infrastructure, which is both energy-efficient and resource saving.

This communication infrastructure enables a miniaturized internet within the chip-stack and therefore the young researcher scientist group calls it “3D-Atto-network”.

The microelectronic, semiconductor and photovoltaic industry has a long tradition in the area of Dresden/Freiberg/Chemnitz. The topic of this young researcher group is one of the most important for the future information and communication technology industry in Saxony and Germany (see high tech industry of the German Confederation and the Free State of Saxony). The Saxony research and development cluster “Silicon Saxony”, including around 300 companies and 40.0000 employees, which has recognized its importance, also supports it.

The 3D-Atto-networks that are based on 3D-integration will become a key technology for future products, innovative technologies and megatrends as Smart Cities, Smart Grids or Industry 4.0. Including for example the tactile internet and the 5G mobile phone standard launched in around 2022.

HAEC II

Collaborative Research Center (CRC) 912, “HAEC – Highly Adaptive Energy-Efficient Computing"

Project title

Collaborative Research Center (CRC) 912, “HAEC – Highly Adaptive Energy-Efficient Computing"

Project leader at IAVT/ZmP
Prof. Dr.-Ing. Dr. h.c. mult.
Karlheinz Bock
Tel.:
(0351) 463 36345
Scientific coordination
Dr.-Ing.
Krzysztof Nieweglowski
Tel.:
(0351) 463 35291
Financing

DFG

Project period
07/2015 - 06/2019
Project partners

All partners of the CRC belong to Technische Universität Dresden.

Faculty of Electrical and Computer Engineering:

  • Institute of Principles of Electrical and Electronic Engineering
  • Institute of Communications Technology
  • Institute of Electronic Packaging Technology

Faculty of Computer Science:

  • Institute of Computer Engineering
  • Institute of Systems Architecture
  • Institute of Software and Multimedia Technology
  • Institute of Theoretical Computer Science

Faculty of Natural Science, Mathematics Section

  • Institute of Numerical Mathematics
  • Center for Information Services and High Performance Computing (ZIH)

Project content
HAEC-approach: optical and wireless chip-to-chip communication in computer system
Glass interposer with out-of-plane optics mounted on flex foil with polymer optical waveguides
Packaging concept of computing node with integrated optical and wireless transceiver

Sub-Project A10: System integration for optical and wireless Pbit/s communication in high performance computing

Addressing the increasing energy demand of global internet usage and the resulting ecological impact of it, the visionary goal of the collaborative research center HAEC (“Highly Adaptive Energy-Efficient Computing”) is to research technologies to enable computing systems with high energy efficiency without compromising on high performance. To achieve the goal of an integrated approach of highly adaptive energy-efficient computing, the problem is approached at all levels of technology involved, the hardware, the computer architecture and operating system, the software modeling as well as the application modeling and runtime control levels. A novel concept (HAEC box) of how computers can be built by utilizing innovative ideas of optical and wireless chip-to-chip communications shall be explored. The HAEC collaborative research center is a first attempt to achieve high adaptivity and energy efficiency with an integrated approach.

In the CRC 912 the IAVT works on the project A10: System integration for optical and wireless Pbit/s communication in high performance computing. The main research focus of the project is the integration of components of communication transceivers into the high performance package. In the phase II following research areas are investigated: electro-optical integration on board- and package-level, packaging for mm-wave communication and embedding/integration of link components on the wafer-level.