Public funded research projects at IAVT/ZmP
Extrem Energieeffiziente Edge Cloud Hardware am Beispiel Cloud Radio Access Network
BMBF
- Technische Universität Dresden
- Vodafone Chair of Mobile Communications Systems
- Institute of Electronic Packaging Technology
- Chair of Compiler Construction
- Chair of Circuit Design and Network Theory
- Chair of Radio Frequency and Photonics Engineering
- eesy-IC GmbH Erlangen
- ficonTEC Service GmbH Achim
- viimagic GmbH Dresden
- GCD Printlayout GmbH Erlangen
- Micro Systems Engineering GmbH Berg/Ofr.
- VI-Systems GmbH Berlin
- Associated: GlobalFoundries LLC & Co. KG, Nokia Bell Labs, Vodafone GmbH, Cloud&Heat Technologies GmbH, National Instruments Corp.
The BMBF project E4C (Extrem Energieeffiziente Edge Cloud Hardware am Beispiel Cloud Radio Access Network) develops an innovative concept for new, scalable computer architecture, which combines the specialized computing nodes and a new data communication structure based on electrical, optical and wireless communication links. This architecture can be implemented into edge-servers in virtualized 5G mobile access networks and can have a capability for energy saving up to 90%. The fabrication of such heterogeneous computing node (see figure) needs a co-integration of chip components on a common interposer substrate. Our institute will in the E4C-project work on packaging approaches for integration and of optical and wireless transceivers (TRx). The DFG CRC 912 HAEC explored on scalable fabrication methods for the integration of optical and mm-wave hardware. Based on this experience, in this project passive components (optical couplers, antennas etc.) will be co-integrated with active ICs into the TRx-packages. The E4C-targeted energy saving will be pursued in the packaging field by using of low-loss and reliable contacts and optimized wiring as well as with application of novel chip integration technologies.
The E4C-project proposes an innovative hardware approach to solve a key problem of 5G-base stations, which in future will bear a significant energy costs for the distribution of computing load in virtualized mobile access networks.
Equipment integration of contact thermography as a fast in-line quality test tool for power electronic modules
BMWi - ZIM
budatec GmbH, Berlin
Kraus Hardware GmbH, Großostheim
The fast and thus in-line-capable assessment of the quality of flat connection points of power semiconductors, which are produced by soldering or sintering, is a problem that has not yet been solved technically. Conventional diagnostic methods (e.g. X-ray or ultrasound microscopy) are either due to the principle or not due to the associated expenses, to carry out a direct quality control during the manufacturing process of the connection points. In the course of a previous project, a new process known as contact thermography was devised and examined in the laboratory. A miniaturized heating structure is coupled to the soldered or sintered power semiconductor as a measuring head. A short heating pulse is then introduced into the semiconductor. Depending on the quality of the connection layer underneath the semiconductor, this heating pulse spreads with different characteristics. This different propagation has a direct effect on the electrical properties of the heating structure, which can be measured. The actual measuring process (including the heating pulse) takes place within a maximum of 1 second and can therefore be integrated into the production line with absolute real-time capability. The technical implementation of the measuring principle and its integration into the process sequence in the production of power electronic modules will for the first time provide an in-line-capable test apparatus that enables real-time information on the quality of the connection points. In comparison to the previous practice of complex downstream investigations, the method promises cost-effective feasibility up to 100% testing in real time and thus direct feedback to the upstream process step of connection formation.
6G-life
BMBF
Technische Universität München (TUM)
TU Dresden and the Technical university of Munich have joined forces to form the 6G-life research hub to drive cutting-edge research for future 6G communication networks with a focus on human-machine collaboration. The merger of the two universities of excellence combines their world-leading preliminary work in the field of tactile internet in the Cluster of Excellence CeTI, 5G communication networks, quantum communication, Post Shannon theory, artificial intelligence methods, and flexible hardware and software platforms.
IAVT/ZMP contributes in the application package 3.5 of 6G-life
Adaptive Microelectronics and Network Hardware
AIM:
Multi-functional interaction/cooperation between man and machine in 6G, faster, more flexible and more reliable through adaptive HW / SW
AI human-machine interface, sensor fusion, behavior detection and prediction, adaptive 6G edge nodes
Partners in AP3.5:
Bock TUD, Fettweis TUD, Göhringer TUD, Herkersdorf TUM, Mayr TUD, Steinhorst TUM, Tetzlaff TUD
Work Objectives
- Modeling, analysis, simulation and prototypical realization of newly emerging memory modules for the development of an in-memory computing concept and an adaptive edge-node architecture as the core of the high speed and low latency of AI chips / systems
- Direct integration of structures of a cellular non-linear / neural network (CNN) with haptic sensors and actuators
- Reconfigurable chip-based hardware (low latency and energy consumption) in combination with a flexible software solution
- Reconfigurable hardware Adaptive, energy-efficient, reliable RAN nodes as well as innovative system architecture and methodology for 6G
- Chiplet-based microelectronics will expand the sixth generation (6G) tactile internet with reconfigurable adaptive network nodes and interfaces between technology and the human body
Silicon Photonics for Trusted Electronic Systems
BMBF
Fraunhofer IPMS Dresden
Fraunhofer IZM-ASSID Dresden
Fraunhofer HHI Berlin
OSRAM Opto Semiconductors Regensburg
qutools GmbH München
The BMBF project Silhouette (Silicon Photonics for Trusted Electronic Systems) (05/2021-04/2024) develops a platform for design, fabrication and testing of integrated photonic integrated circuits and electro-optical (E/O) interposers for photonic encryption.
With the Silhouette will our IAVT-team research on suitable packaging technologies for scalable and parallel processes of E/O hybrid integration. The focus of the investigations is on the optical signal redistribution on interposer-level and the coupling to chip-level. Direct structurable optical polymers will be used for the integration of optical waveguides and couplers, which enable an efficient and planar coupling into inorganic waveguides on chip-level (SiN-technology). The most modern waveguide materials, 3D printing and substrate processing methods as well as new multi-layer and transfer processes will be used in order to reduce the amount of process steps and thus enhance the yield for fabrication. The goal is to extend the existing technologies for fabrication of electrical interposers with optical wiring in order to integrate the optical functionality. In this regard, the compatibility of the corresponding contacting and assembly processes have to be ensured. Additionally within the Silhouette an automated testing of optical structures on chip- and interposer-level will be developed.
Schwarzer Phosphor in empfindlichen, selektiven und stabilen Sensoren
ForMikro (BMBF)
Helmholtz-Zentrum Dresden-Rossendorf
TU Dresden, Professur für molekulare Funktionsmaterialien
TU Dresden, Institut für Halbleiter- und Mikrosystemtechnik
Zweidimensionale (2d) Halbleiter sind dadurch, dass ihre Eigenschaften nahezu ausschließlich durch die Oberfläche dominiert werden, für Anwendungen als Sensoren ausgezeichnet geeignet. Einige 2d-Materialien sind auch unter den Einflüssen von Umgebungsbedingungen stabil. Andere Materialien reagieren sehr stark auf die sie umgebende Atmosphäre und sind dadurch prinzipiell sehr viel empfindlicher bei der Detektion von kleinen Änderungen der Umgebungsbedingungen. Schwarzer Phosphor, ein Halbleitermaterial mit höchster Mobilität bis 200 cm2/Vs, ändert seine Eigenschaften bei Kontakt mit Umgebungsbedingungen sehr stark, so dass die Fabrikation von elektronischen Bauelementen normalerweise unter Schutzgasbedingungen erfolgt. Ziel dieses Projektes ist es, diese Empfindlichkeit des Materials für Anwendungen als Gas- und Biosensoren zu nutzen und dabei eine stabile und selektive Umgebung zu definieren. Besonders die Selektivität ist eine große Herausforderung für Sensoren, die auf 2d-Materialien und insbesondere auf schwarzem Phosphor basieren, weil die hohe Oberflächensensitivität typischerweise nicht selektiv auf die anbindende Spezies reagiert. Diese Selektivität soll durch di, auf spezielle Barrieren basierende, gezielte selektive Durchlässigkeit der Gehäuseumgebung, in die der Sensor eingebettet wird, erreicht werden. In diesem Projekt wird dabei ein spezieller Gassensor basierend auf schwarzem Phosphor als Labormuster erstellt. Die Gehäuseumgebung, die für die Verkapselung der Sensoren entwickelt wird, kann in weiteren Projekten auch als Plattform für eine große Anzahl verschiedener Sensorkonzepte verwendet werden.
Forschungslabor Mikroelektronik Dresden für rekonfigurierbare Elektronik
BMBF
TU Dresden
Das Bundesministerium für Bildung und Forschung fördert auf Basis dieser Förderrichtlinie Investitionen an Hochschulen mit leistungsfähigem Schwerpunkt in der Mikroelektronik.
Durch die Förderung soll die Forschungsausstattung modernisiert und erweitert werden. So sollen neue Forschungsfelder der Mikroelektronik auf internationalem Spitzenniveau erschlossen werden. Zudem soll der wissenschaftliche Austausch und die Kooperation der geförderten Einrichtungen durch eine Vernetzung untereinander als Teil dieser Richtlinie gestärkt werden.
Gefördert werden Investitionen an Hochschulen mit ausgewiesener Expertise im Bereich der Mikroelektronik. Für das IAVT/ZmP wurde das Dickschichtlabor mit einer Schutzgas-Handschuhbox mit einer Sputter- und Bedampfungsanlage sowie einer Atomlagenabscheidung gefördert.
Functional integrated sandwich panels for airplanes cabin as a prerequisit for Industry 4.0 and innovative business and MRO processes
BMWi
TU Hamburg, Institut für Flugzeug-Kabinensysteme
IMA Materialforschung und Anwendungstechnik GmbH
The goal of the project is the design of functions integrating, intelligtent and data processing sandwich panels for airplanes cabin - so called "Bauteile 4.0". In the past such constructional panels have been designed following strictly the convention "one function - one element". That hirarchical system and function separation restrains the ambition of developing multifunctional, highly integrated and hence weight optimized construction elements. Automotive industry has demonstrated that integration of additional functions like energy or data transfer into elements leads to wight reduction of the whole system while reliability and safety at least hold the former level. Functional integration is always combined with a plus on comfort for passengers and enables intelligent production processes as well as simplier assembly and maintenance.
Hence, there is a need in avionics industry as well to use the principle of funtional integration into elements. The airplanes cabin allows to design highly integrated elements with miscellaneous electronic and IT functions, to manufacture and implement those elements. Cabin interior, ground floor and multiple additional sndwich panels in the cabin are predestinated for that.
Centre for Tactile Internet with Human-in-the-Loop
DFG funded Excellence Cluster
TU München
Deutsches Zentrum für Luft- und Raumfahrt
Fraunhofer-Gesellschaft
Wandelbots
Deutsche Telekom
atlantic labs
IAVT is part of excellence cluster CeTI
The “Centre for Tactile Internet with Human-in-the-Loop” (CeTI) at TU Dresden will lift the interaction between humans and robots on a new level. In future, people should be able to interact in real time with networked automated systems in the real or virtual world. In particular, humans will be within the feedback loop between the cyber and physical components of technical systems. In order to achieve this goal, various disciplines within the TU Dresden work together on this project, including electrical engineering and information technology, psychology, medicine and neuroscience. Furthermore, external partners including the TU München and the Deutsches Zentrum für Luft- und Raumfahrt and others will support the project.
The IAVT will support this research project with research on reliable flexible and stretchable electronics. The central challenge in CeTI requires sensors, such as touch and positioning sensors, as well as actuators on various positions on the body. The power supply and partially the communication between the individual elements need to be ensured by conductive tracks. Those, on the one hand need to adapt to human movements and shapes through suitable mechanical properties. But, on the on the other hand they need to keep performing flawlessly. In addition, due to the large number of different elements, a high degree of integration and miniaturization is required in order not to influence the motion sequences. Furthermore, very fast processing of the sensor signals and non-delay communication of sensor nodes between human and machine and with the network or edge cloud is required. That leads to a major prerequisite for electronic, which needs to be designed for very high frequencies.
Research group Optical Packaging for 3D-optomechatronic-Devices
DFG
Friedrich-Alexander University Erlangen-Nuremberg (Chair of Factory Automation and Production Systems and Institute of Optics)
Leibniz University Hannover (Institute of Transport and Automation Technology)
Laserzentrum Hannover e.V.
Current roadmaps are increasingly highlighting the role of optical bus systems as the backbone of future sensor and infotainment networks in many areas. Automotive, aerospace and industrial 4.0 applications in particular benefit from high EMC compatibility and low weight. In addition to these advantages, the high bandwidth energy efficiency and the low space requirement of optical connections are especially outstanding. In times of constantly increasing data volumes, standard copper wiring is reaching its limits, especially due to energy consumption at high transmission rates.
In the research group OPTAVER (Optical Packaging for 3D-optomechatronic-Devices) the modelling, simulation and additive production of polymer optical fibers on flexible foil substrates and their connection by asymmetric bus couplers as optical bus systems are investigated. In the first funding period, the system components were realized as planned and demonstrated in cooperation. The optical waveguides were first applied to a two-dimensional foil. This was conditioned in advance to improve the aspect ratio of the waveguide.
In the second funding period, the extension to three-dimensional opto-mechatronically integrated components (3D-opto-MID) is to be investigated. The formability of the thermoplastic film substrates will be used for this purpose. The three-dimensional integration of optical and mechatronic functionalities leads to an increase of the integration density and an extension of the design possibilities of opto-MID. The detachable optical couplers also offer a 3D-capable reconfigurable connection to a bus system.